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A statistical treatment of the complex morphology of polymeric chains, trees and networks is developed. 
Its usefulness consists in the possibility to describe intricate properties in terms of a twofold diagram 
and a very simple correlation function. The method proposed here has been applied in other fields 
such as: (i) porous media,’-5 (ii) physical ad~orption,~.’ and (iii) the morphology of products of aggre- 
gation and gelation.* Firstly, having in mind that the span of applications is very wide, the foundations 
of the twofold description are stated in a rather abstract form. Subsequently, they are exemplified in 
some detail for the case of statistical copolymer chains. Finally, a great variety of systems of interest 
in polymer science in which twofold description is valuable are briefly pointed out. 
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FOUNDATIONS OF THE TWOFOLD DESCRIPTION 

In order to obtain a convenient statistical description of many complex systems, it 
is proposed to perform the following steps: 

-to decompose the system into a collection of two kinds of interrelated ele- 
ments, “sites” and “bonds”, having a different function in the network that must 
be clearly established. 

-to recognize a “metric”, or property such as size, number of repetitive units, 
energy, etc. that characterizes each element. In order to compare this property 
between these two kinds of elements, the nature of this metric must be the same 
for both sites and bonds. 

-to point out, from the very definitions of “site” and “bond”, a “construction 
principle”: an obvious and constant inequality in metric for each site compared to 
any of its corresponding bonds. Chains, trees and networks observing this principle 
are termed “self-consistent”. 
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20 G. B. KUZNETSOVA, V. MAYAGOITIA AND I. KORNHAUSER 

-to propose a distribution of this metric for each kind of element. The twofold 
distribution must be set on a number of elements basis and normalized. 

-if the distributions of sites and bonds are inappropriate or their overlap is 
considerable, then the construction principle risks to be violated. In order to avoid 
this event, two “self-consistency laws” arise: (i) the first law deals with restrictions 
imposed to the distributions as a whole in order to have a permitted collection of 
sites and bonds, and (ii) the second law is of a local character and prevents the 
reunion of elements that could violate the construction principle. 

-a balance of sites and bonds when performing a self-consistent assignation of 
the metric to directly related elements allows to determine readily the function 
expressing the correlation of metric along the structure. This function is similar for 
different types of structures. 

-when the randomness of this assignation of metric to the elements is raised 
to a maximum while self-consistency remain the only restriction, the structure is 
termed “verisimilar”, or having the most expected morphology in the absence of 
other particular informations I Conversely, a confrontation between a verisimilar 
model and experiment leads to the conviction of physicochemical constraints to 
randomness in the formation of chains, trees or networks. 

-the use of this function, either by analytical (probabilistic) or by digital (Monte 
Carlo) methods makes evident a “segregation effect” of the metric throughout the 
structure, i.e. usually they are non-fully random media but there exist regions of 
reunited elements exhibiting extreme values of the metric. 

Thus, the statistical description renders not only a more detailed, because of a 
dual, distribution of the metric, but also precious information about the mor- 
phology, or the sequence of values of the metric along the structure, statistically 
expressed. 

The term “twofold description” is related to the consideration of two kinds of 
elements, but this treatment can also be multivariated, as for arboreous aggregates. 

COPOLYMERS 

As an example of application of the quite abstract procedure outlined above, let 
us consider a linear copolymer formed by type A and B monomeric units as * . -A- 
B-A-B-B-B-A-A-B-B-B- . . . If N A  and N ,  are respectively the number of repetitive 
units of A and B in a given chain, and if N ,  = NA + N ,  is the total number of 
monomers in the chain, it is obvious that, for every chain: 

CONSTRUCTION PRINCIPLE N ,  3 N ,  (1) 

Suppose that B is the major component, and that the distributions of Ns and N B  
overlap considerably (see Figure 1). If the normalized distribution functions of 
these quantities are F, and FB, then the probabilities to find values of N ,  and N B  
up to a particular value N of the metric are, respectively: 

N N 

0 0 
S(N) = 1 F,(N) d N ;  B(N) = F,(N) dN 
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TWOFOLD DESCRIPTION OF MORPHOLOGY 21 

FIGURE 1 'Twofold distribution of Ns and N,.  

Overlap means that there can be found a value of N B  higher than some other 
of Ns. These of course, by virtue of the above condition, do not correspond to the 
same chain. 

Two SELF-CONSISTENCY LAWS must be observed in order to fulfill the 
construction principle: (ij The FIRST LAW concerns a general relationship be- 
tween the overall distributions: 

FIRST LAW B(Nj 3 S(N) for every N ( 3 )  

otherwise the total number of repetitive units, N ,  could not be enough important 
to accommodate in each chain the units of B specified in the number distribution 
of this own B-element. Thus, each whole chain is playing the role of a site while 
its content of B-monomers play the role of a bond. (ii) If the probability density 
p(R, n RB) of the joint event of finding a chain of N ,  total monomers and N E  
monomers of B in this chain can be expressed as: 

where +(Ns, N B )  is a function of correlation, then a SECOND LAW holds for 
each chain in order to avoid the reunion of an inconsistent pair of values of N ,  
and N,: 

In order to develop an expression for 41 in the correct condition N s  3 N,,  let 
us propose a particular method of assignation, to each chain of length N,, a proper 
value of N B .  
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a’ ‘ I  

I II 

FIGURE 2 The meaning of several quantities appearing in Equations (6)-(9). 

This treatment follows very closely these for the deduction of similar functions 
+ playing a role in the topological structuration of porous media and adsorbent 
 surface^.'^^*^ 

We consider first the smallest chains, and then assign to each of them a value 
of N ,  randomly choosed among the values lower than Ns corresponding to these 
chains, i.e. with the only restriction indicated by the construction principle, Equa- 
tion (1). If the first law has been observed, this is always possible. 

The procedure follows in such a way as to continue the exhaustion of chains, 
each time bigger. This method would seem very arbitrary at first sight. This point 
will be discussed later, when an alternative procedure will be outlined. 

An intermediate stage of such process is schematically depicted in Figure 2. 
Wasted values of N B  area (12’) have already been assigned to chains with lower 

N ,  (area a).  Values of N B  smaller than Ns (area b’), randomly chosen from the 
available distribution (area c‘) are assigned to chains with length between N s  and 
N ,  + dN,. As the distribution curves are normalized, the following relationships 
arise: 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
8
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



TWOFOLD DESCRIPTION OF MORPHOLOGY 23 

(7) b = b’ = F,(N,) dN, = dS(Ns)  

C‘ = B(Ns) - S(N,) (9) 

the conditional probability density of finding, for a chain of length N,, a number 
of monomers of B equal to N B  is, according to (4): 

Values of a fixed N B  are progressively exhausted as chains longer and longer 
(starting with those of N ,  equal to N5)  are being suffering assignation. The “ex- 
haustion function”, B(NB,  N,) of values N B  being exhausted for chains with length 
N ,  or lower, grows differentially along the process of assignation according to two 
factors: (i) the fraction of new chains, dS(Ns) and (ii) provided these chains have 
in fact N B  monomers of B ,  p(NBINs): 

The construction principle may be expressed, taking into account the restriction 
imposed by Equation ( 5 )  as: 

b‘, the fraction of exhausted N B  of all permitted values when chains of length 
between N s  and N ,  + d N s  are assigned is obtained by performing an integration 
along N B  while keeping N ,  constant. From (11) and (12) we obtain: 

During a differential step of assignation, the ratio between the fraction d g  dNB 
(all of specific value N B ) ,  and the total fraction of values of N g ,  dS(N,) (allowing 
for all the possible N B  values), both assigned to chains of length N,, is equal to 
the ratio between available specific values N5 (those which have not yet been 
assigned to any site), [FB(NB) - g ( N B 7  N,)] dN,, and the fraction of all the available 
possible values N B  (those not yet been assigned and corresponding to a span of N 
values between zero and N,), B(N,) - S(Ns): 

This expression can be integrated, while keeping N B  constant, between the fol- 
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lowing limits: at the start of the assignment of values N,, we deal with chains such 
that N, = N, and 8 = 0, while the assignment proceeds to any point characterized 
by the conditions N ,  > N B  and 0 < 8 < FB(NB). Since N ,  has been kept constant, 
F,(N,) also adopts a fixed value. Then, the integration yields: 

From Equations (ll), (14) and (lS), the final expression for 4 is obtained: 

exp (- I””’ ”) 
S ( N n )  B - S 

(16) B(N.s) - S(N.4 
4 P S >  IVB)  = - 

Had the bonds been taken from the larger to the smaller ones, while applying 
in each case the proper site sizes (randomly but still respecting the construction 
principle), this inverse procedure would lead to the completely equivalent expres- 
sion for 4: 

exp (- X )  
B(Nn) B - S 

If the function 4 were always equal to unity for any pair of values of N, and 
N,, the events of finding a chain of a given length and a given number of B 
monomers for it would be independent [cf. Equation (4)], and in this case the 
assignation of values of N ,  and N ,  to the chains should be totally at random. This 
can occur only when the overlap between the corresponding distributions is zero. 
Conversely, 4 # 1 means that these values are correlated. 

Since the equivalent expressions (16) and (17) for the function 4 have been 
obtained raising the randomness to its maximum permitted degree, this stoichio- 
metric model can be termed Verisimilar, i.e. that corresponding to the minimum 
number of constraints (the construction principle being the only restriction intro- 
duced), or that which is the most expected to correspond to a real system in the 
absence of other information (additional constraints) about the particular physi- 
cochemical nature of the composition of the mixture related to the kinetics and 
mechanism of its preparation or any other relevant aspect of it. Some kinds of 
constraints that could affect the former expressions are mentioned e l ~ e w h e r e . ~ , ~  

Suppose that all of the polymeric chains bear some kind of additional restriction, 
e.g. all of them contain a minimum number, a, of the monomer A as a result for 
example of an incorporation of a-sized blocks of A. The function of correlation 
takes the form: 
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TWOFOLD DESCRIPTION OF MORPHOLOGY 25 

N NS - 
FIGURE 3 FB I$, the distribution of the number of B monomers for a particular value of Ns.  

Similarly other particularities, acting as additional restrictions, could be expressed 
as modifications of 4. 

Analysis and confrontation of experimental (NMR) results of r-mers and kinetic 
schemes with this treatment could be very useful in order to make evident several 
kinds of effects or tendencies as well as to describe a complex system in a simple 
form. 

In consequence, for a chain of a certain total number of repetitive units N,>, the 
conditional probability density to find N B  is: 

Thus, this particular form of + allows, in the case of a fully-random distribution 
of monomers A and B,  a direct and readily way to calculate the distribution of 
composition of chains according to their size (see Figure 3). 

The treatment is straightforwardly applied to deal with the distribution of dimers, 
trimers, etc. for a given length of the chain. In general scarce monomeric units, 
whose distributions do not overlap with the site distribution, are fully-random 
organized, while frequently encountered species are allocated in chains in a cor- 
related way. Several species distributions could be simultaneously correlated with 
the length of the chain. 

OTHER APPLICATIONS 

Arboreous Aggregates 

These structures are the result of diffusion-limited aggregation, from a central seed, 
of particles endowed of brownian motion. They can be readily decomposed in 
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chains of n elements (primary aggregate particles), from which other chains de- 
velop. Successive levels of order can be distinguished: Starting from seed particle, 
there develop first-order chains, which possess the greatest number of particles, 
and from them there appear second-order chains, etc. In dealing with neighboring- 
order chains, the ancestor can be termed “stem” while their descendents are 
“branches”. Now, if this classification is adopted, higher-order chains have always 
a smaller number of elements than their own lower-order ancestors. The position 
of branching BS (branch seed) with respect to the end of the ancestor SB (stem 
boundary) is very important. 

From the very definitions o f  “stem” and “branch”, it follows the construction 
principle of the whole structure: “The number of elements of a branch is always 
smaller or at most equal to the number of elements from the branch seed up to 
the stem boundary,” so that stems play the role of sites while branches are bonds. 
A very important step of this treatment consists in performing a transformation 
from the distribution of ns to the distribution of nBS--tSB, which is the quantity 
directly involved in the construction principle. 

It is worth pointing out that in this treatment all the elements located at the 
same number of particles up to the last particle SB of their stem possess the same 
probability density to  generate a branch of a given size f ig ,  no matter the value ns 
of their own stem. 

A segregation effect arises. This phenomenon is evident and consists in that for 
a certain stem, the branches are more important the closer they are to the seed, 
just as a pine tree. Also, ‘‘long’’ stems have a tendency to be ancestor of ‘‘long’’ 
branches. 

It is possible to generate interesting fractals, as they are in the sense that the 
same kind of metrics, in this case the convolution properties of the neighboring- 
order chain distributions as well as the connectivity (the average ratio of number 
of seeds SB of a stem to the number of elements nS of the same stem), is conserved 
from one change of stem order to the other. Again, the method leads to describe 
complex structures in very simple terms. It allows also to generate verisimilar 
morphologies that can be compared with results of transmission electron microscopy 
or Monte Carlo calculations o f  DLA aggregation in order to account for physi- 
cochemical preferences during the formation of aggregates. 

This approach coould also be applied to graft, cross-linked and other sort of 
ramified polymers. 

Dense Aggregates 

The clearest example could be related to silica aggregates, in which particles of 
about the same size are joined together during gel formation. After a certain degree 
of sinterization, there remains it network constituted by alternated elements: “sites” 
(solid bulges, solid globules or their remains) and “bonds” (solid bridges between 
globules, minima in the cross-section of the solid phase). 

Porous Networks 

These are the counterpart of the systems mentioned immediately above. They are 
extensively described el~ewhere.’-~ The size of a site (antrum, cavity) can be ap- 
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TWOFOLD DESCRIPTION OF MORPHOLOGY 27 

proximated to the radius of the inscribed sphere inside the hole, while the size of 
a bond (passage, window) is related to the radius of the inscribed circle of the 
minimum cross-section defining this bond. If all sites are considerably larger than 
all of the bonds, their distributions are not overlapping. The size topology of sites 
and bonds can exhibit a totally random character, since the construction principle 
could never be violated in this case. As overlap between distributions becomes 
considerable, i.e. many sites have R values smaller than those of certain bonds 
(these bonds of course cannot be the delimiting ones of such sites), there arise size- 
correlations between the elements leading to a size segregation effect, the reunion 
of elements of similar sizes. Finally, when overlap is nearly complete, there appear 
“homottatic” domains in such ways that the size values for both sites and bonds 
within each one of the homogeneous domains become the same. 

Foams 

One important case of the combination of solid and void matrices arises in the 
description of foams, e.g. polyurethane foams. Quadrifold distributions, two for 
the solid and two for the void spaces are required. 

Cyclic Structures 

The treatment becomes still more interesting when another property of networks 
is considered: The connectivity, or number of bonds delimiting a site. By virtue 
of the application of the construction principle to structures bearing diverse values 
of the connectivity for each one of their sites, it can arise a “connectivity segregation 
effect” which consists in that there form regions of higher connectivity and bigger 
elements, and other ones of low both connectivity and elements size. Truncated 
spherulites seem to suffer these combined effects. On the other hand glass, an 
inorganic polymer, that has been represented in two dimensions by the Zachariassen 
model, possess rings constituted of siloxane elements joined cyclically. The size of 
the site is represented by the variable-number of oxygen atoms of the ring, while 
the bonds or Si-O-Si bridges delimiting one site from another are all equal. No 
overlap of distributions is possible in this case, so that glass seems to be a totally 
disordered structure, in which neighboring sites are by no means correlated. 

CONCLUSIONS 

The twofold description has been previously applied to study complex structures 
in several fields. It was shown here that this method can be equally useful to describe 
polymer morphologies. 
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